The evolution of novel Coronavirus and epidemic spread

BIO4159 – Evolutionary Ecology, University of Ottawa 11 March 2020

Rees Kassen
@ReesKassen; kassenlab.weebly.com

licensed under a <u>Creative Commons Attribution-</u> NoDerivatives 4.0 International License

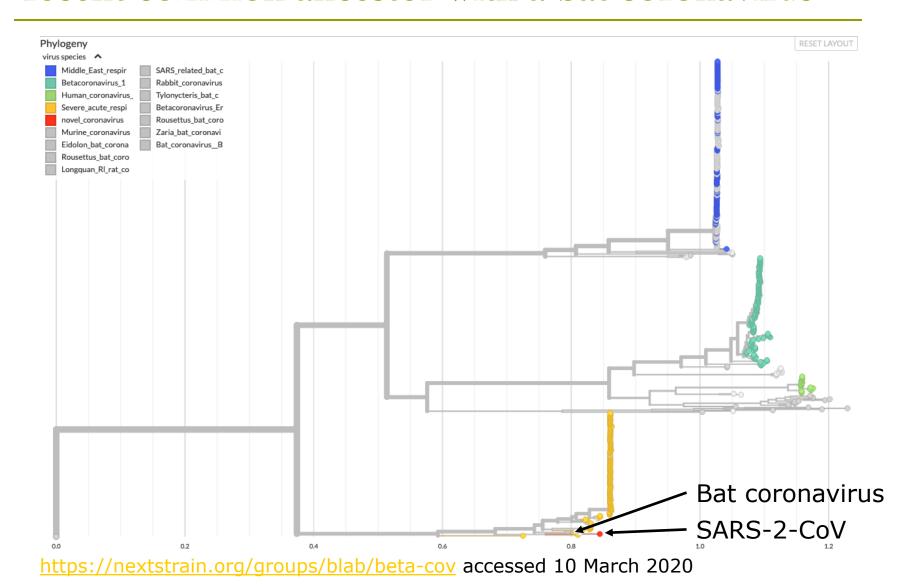
Learning objectives

- Some facts about Coronavirus
- Understand how viruses make the shift from one species to another
- Understand the principles behind the SIR model
- Define R0
- Explain why vaccination is effective

Coronavirus COVID-19 (SARS-2-

CoV)

virus



- Coronavirus refers to the crown-like (Latin: corona) viral envelope that can be seen with electron microscopy
- COVID-19 is the disease; SARS-2-CoV is the virus
- Transmission: respiratory
- Incubation period: mean 6.4 days (range of 2-12 days)
- □ Viral shedding can occur for ~7 days after recovery
- □ Mortality rate $\sim 2\%$, but highly uncertain and changes with age (seasonal flu $\sim 0.1\%$; SARS 10%)

The natural history of Coronavirus

- Coronaviruses are a family of RNA viruses that infect many different species of animals including camels, cattle, cats, and bats. And humans, of course.
- Coronaviruses can cause respiratory illnesses in humans that include the common cold as well as more severe diseases like Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)

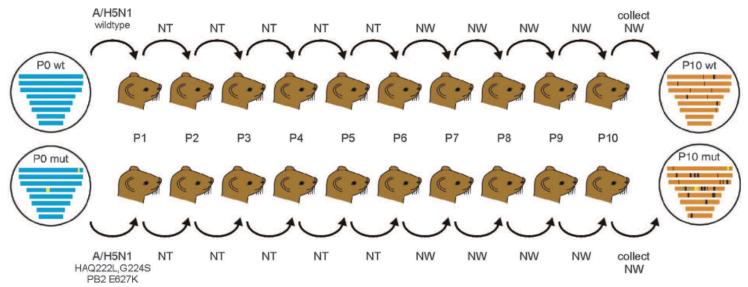
SARS-2-CoV is a new virus that shares a most recent common ancestor with a bat coronavirus

How does a virus jump from bats to humans?

- The details remain unknown, except for the fact that SARS-CoV-2 infects human cells in the same way that SARS-CoV-1 (from the outbreak in 2002) does, only more efficiently
- The basics: the 'spikes' protruding from the viral surface bind to receptors on human cells called ACE2, undergo a transformational change, and then fuse the viral and human cell membranes

The evolution of novel viruses

- Viruses circulating in animals sometimes jump species boundaries to infect humans
- This requires mutations that allow the virus to both establish (ie replicate) in a human cell and transmit, often through the air
- So-called 'zoonotic' infections (coming from animals) that can then be transmitted among humans are rare because multiple mutations are required


Example: the evolution of airborne transmission of influenza H5N1

- Animal influenza viruses occasionally infect humans but rarely spread widely because they cannot be transmitted through the air
- Following the H1N1 influenza outbreak of 2009, which was derived from pigs, questions arose as to how easy it would be for animal-derived flu viruses to be transmitted via aerosols and cause infection in humans

An experimental test: passaging

avian H5N1 in ferrets 336: 1534

Herfst et al 2012. Science

- □ Targeted mutagenesis (to produce a high-titre shedding virus) + 10 passages was sufficient to generate viruses that could transmit through aerosols
- 5 mutations were necessary for aerial transmission
- Aerial transmission can evolve

Infection dynamics – the SIR model

- SIR stands for 'susceptible', 'infected', and 'recovered'
- We model the flow of people between these three states, assuming complete mixing in each category, no intermediate vectors (like a mosquito), and that recovered individuals are immune to the infection
- What follows is the simplest version of the SIR models and is meant to demonstrate basic principles only, not the actual dynamics of the current outbreak

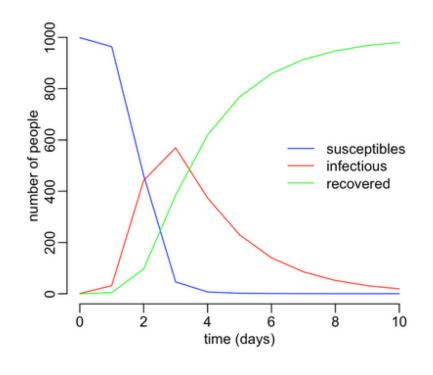
SIR model basics

$$\square N = S + I + R$$

$$\square \frac{dS}{dt} = -\beta \frac{SI}{N}$$

How often a susceptible-infected contact causes a new infection

$$\Box \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

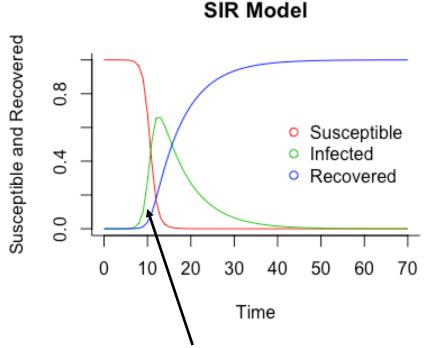

The rate at which an infected individual recovers

$$\Box \frac{dR}{dt} = \gamma I$$

Visually:

$$S \xrightarrow{\beta \times I} I \xrightarrow{\gamma} R$$

The dynamics of infection



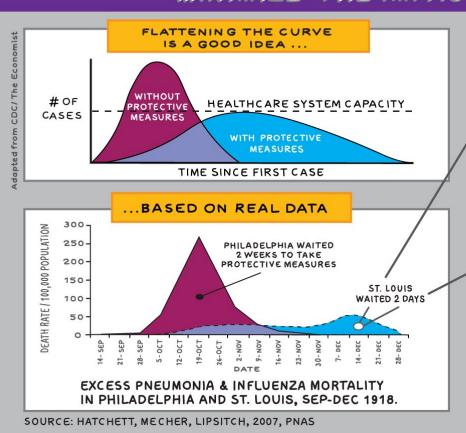
$$\beta = 0.004$$

$$\gamma = 0.5$$

Graphic from https://rpubs.com/choisy/sir

The dynamics of infection

$$\beta = 0.004$$


$$\gamma = 0.5$$

Note the timeline has an arbitrary scale

As of today (11 March 2020) we are here with COVID-19...in the exponential phase of the epidemic. In other words, infections are still increasing rapidly

Slowing the rate of spread of COVID-19 involves reducing β

MINIMIZE THE IMPACT OF COVID-19

COMMUNITY-BASED
INTERVENTIONS IMPLEMENTED
QUICKLY IN ST. LOUIS WERE:

- CLOSED SCHOOLS, CHURCHES, THEATERS AND DANCE HALLS
- BANNED LARGE
 PUBLIC GATHERINGS
- SOCIAL DISTANCING

STOP THE SPREAD BY:

WASH YOUR HANDS

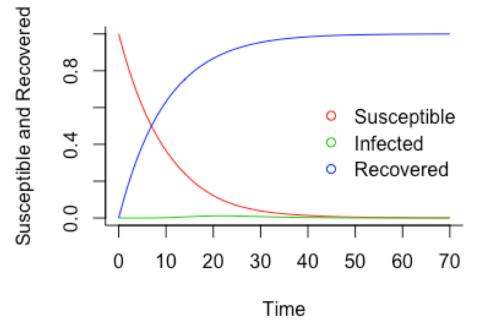
COVER YOUR COUGHS

STAY HOME WHEN YOU CAN

BY: @OLIVIAPHAMNOW

What happens if you vaccinate?

■ You effectively move S's into R's:


$$\Box \frac{dS}{dt} = -\beta \frac{SI}{N} - vacc \times \frac{S}{N}$$

$$\square \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\square \frac{dR}{dt} = \gamma I + vacc \times \frac{S}{N}$$

So *if* we can get a vaccine, we can reduce infections

SIR Model with vaccination

Some useful resources for understanding COVID-19

- https://www.arcgis.com/apps/opsdashboa rd/index.html#/bda7594740fd402994234 67b48e9ecf6
- https://nextstrain.org/ncov
- https://art-bd.shinyapps.io/nCov_control/
- https://www.cdc.gov/coronavirus/2019ncov/about/index.html